Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 7881, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38036504

ABSTRACT

The impacts of large terrestrial volcanic eruptions are apparent from satellite monitoring and direct observations. However, more than three quarters of all volcanic outputs worldwide lie submerged beneath the ocean, and the risks they pose to people, infrastructure, and benthic ecosystems remain poorly understood due to inaccessibility and a lack of detailed observations before and after eruptions. Here, comparing data acquired between 2015 - 2017 and 3 months after the January 2022 eruption of Hunga Volcano, we document the far-reaching and diverse impacts of one of the most explosive volcanic eruptions ever recorded. Almost 10 km3 of seafloor material was removed during the eruption, most of which we conclude was redeposited within 20 km of the caldera by long run-out seafloor density currents. These powerful currents damaged seafloor cables over a length of >100 km, reshaped the seafloor, and caused mass-mortality of seafloor life. Biological (mega-epifaunal invertebrate) seafloor communities only survived the eruption where local topography provided a physical barrier to density currents (e.g., on nearby seamounts). While the longer-term consequences of such a large eruption for human, ecological and climatic systems are emerging, we expect that these previously-undocumented refugia will play a key role in longer-term ecosystem recovery.

2.
Science ; 381(6662): 1085-1092, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37676954

ABSTRACT

Volcanic eruptions on land create hot and fast pyroclastic density currents, triggering tsunamis or surges that travel over water where they reach the ocean. However, no field study has documented what happens when large volumes of erupted volcanic material are instead delivered directly into the ocean. We show how the rapid emplacement of large volumes of erupted material onto steep submerged slopes triggered extremely fast (122 kilometers per hour) and long-runout (>100 kilometers) seafloor currents. These density currents were faster than those triggered by earthquakes, floods, or storms, and they broke seafloor cables, cutting off a nation from the rest of the world. The deep scours excavated by these currents are similar to those around many submerged volcanoes, providing evidence of large eruptions at other sites worldwide.

3.
ISME Commun ; 3(1): 27, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37009785

ABSTRACT

Viruses can affect coral health by infecting their symbiotic dinoflagellate partners (Symbiodiniaceae). Yet, viral dynamics in coral colonies exposed to environmental stress have not been studied at the reef scale, particularly within individual viral lineages. We sequenced the viral major capsid protein (mcp) gene of positive-sense single-stranded RNA viruses known to infect symbiotic dinoflagellates ('dinoRNAVs') to analyze their dynamics in the reef-building coral, Porites lobata. We repeatedly sampled 54 colonies harboring Cladocopium C15 dinoflagellates, across three environmentally distinct reef zones (fringing reef, back reef, and forereef) around the island of Moorea, French Polynesia over a 3-year period and spanning a reef-wide thermal stress event. By the end of the sampling period, 28% (5/18) of corals in the fringing reef experienced partial mortality versus 78% (14/18) of corals in the forereef. Over 90% (50/54) of colonies had detectable dinoRNAV infections. Reef zone influenced the composition and richness of viral mcp amino acid types ('aminotypes'), with the fringing reef containing the highest aminotype richness. The reef-wide thermal stress event significantly increased aminotype dispersion, and this pattern was strongest in the colonies that experienced partial mortality. These findings demonstrate that dinoRNAV infections respond to environmental fluctuations experienced in situ on reefs. Further, viral productivity will likely increase as ocean temperatures continue to rise, potentially impacting the foundational symbiosis underpinning coral reef ecosystems.

4.
PeerJ ; 11: e15119, 2023.
Article in English | MEDLINE | ID: mdl-37009161

ABSTRACT

Methane seeps are highly abundant marine habitats that contribute sources of chemosynthetic primary production to marine ecosystems. Seeps also factor into the global budget of methane, a potent greenhouse gas. Because of these factors, methane seeps influence not only local ocean ecology, but also biogeochemical cycles on a greater scale. Methane seeps host specialized microbial communities that vary significantly based on geography, seep gross morphology, biogeochemistry, and a diversity of other ecological factors including cross-domain species interactions. In this study, we collected sediment cores from six seep and non-seep locations from Grays and Quinault Canyons (46-47°N) off Washington State, USA, as well as one non-seep site off the coast of Oregon, USA (45°N) to quantify the scale of seep influence on biodiversity within marine habitats. These samples were profiled using 16S rRNA gene sequencing. Predicted gene functions were generated using the program PICRUSt2, and the community composition and predicted functions were compared among samples. The microbial communities at seeps varied by seep morphology and habitat, whereas the microbial communities at non-seep sites varied by water depth. Microbial community composition and predicted gene function clearly transitioned from on-seep to off-seep in samples collected from transects moving away from seeps, with a clear ecotone and high diversity where methane-fueled habitats transition into the non-seep deep sea. Our work demonstrates the microbial and metabolic sphere of influence that extends outwards from methane seep habitats.


Subject(s)
Microbiota , Seawater , Methane/chemistry , RNA, Ribosomal, 16S/genetics , Biodiversity , Microbiota/genetics
5.
Science ; 379(6636): 978-981, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36893246

ABSTRACT

Ocean manipulation to mitigate climate change may harm deep-sea ecosystems.


Subject(s)
Climate Change , Ecosystem , Oceans and Seas
6.
Sci Rep ; 12(1): 7500, 2022 05 07.
Article in English | MEDLINE | ID: mdl-35525863

ABSTRACT

With the COVID-19 pandemic came what media has deemed the "port congestion pandemic". Intensified by the pandemic, the commonplace anchoring of high-tonnage ships causes a substantial geomorphologial footprint on the seabed outside marine ports globally, but isn't yet quantified. We present the first characterisation of the footprint and extent of anchoring in a low congestion port in New Zealand-Aotearoa, demonstrating that high-tonnage ship anchors excavate the seabed by up to 80 cm, with the impacts preserved for at least 4 years. The calcuated volume of sediment displaced by one high-tonnage ship (> 9000 Gross Tonnage) on anchor can reach 2800 m3. Scaled-up globally, this provides the first estimates of the footprint of anchoring to the coastal seabed, worldwide. Seafloor damage due to anchoring has far-reaching implications for already stressed marine ecosystems and carbon cycling. As seaborne trade is projected to quadruple by 2050, the poorly constrained impacts of anchoring must be considered to avoid irreversible damage to marine habitats.


Subject(s)
COVID-19 , Ships , Ecosystem , Humans , New Zealand , Pandemics
7.
Front Microbiol ; 12: 745915, 2021.
Article in English | MEDLINE | ID: mdl-34777294

ABSTRACT

Climate change is driving dramatic variability in sea ice dynamics, a key driver in polar marine ecosystems. Projected changes in Antarctica suggest that regional warming will force dramatic shifts in sea ice thickness and persistence, altering sea ice-associated primary production and deposition to the seafloor. To improve our understanding of the impacts of sea ice change on benthic ecosystems, we directly compared the benthic microbial communities underlying first-year sea ice (FYI) and multi-year sea ice (MYI). Using two tractable coastal habitats in McMurdo Sound, Antarctica, where FYI (Cape Evans) and MYI (New Harbour) prevail, we show that the structure and composition of the benthic microbial communities reflect the legacy of sea ice dynamics. At Cape Evans, an enrichment of known heterotrophic algal polysaccharide degrading taxa (e.g., Flavobacteriaceae, unclassified Gammaproteobacteria, and Rubritaleaceae) and sulfate-reducing bacteria (e.g., Desulfocapsaceae) correlated with comparatively higher chlorophyll a (14.2±0.8µgg-1) and total organic carbon content (0.33%±0.04), reflecting increased productivity and seafloor deposition beneath FYI. Conversely, at New Harbour, an enrichment of known archaeal (e.g., Nitrosopumilaceae) and bacterial (e.g., Woeseiaceae and Nitrospiraceae) chemoautotrophs was common in sediments with considerably lower chlorophyll a (1.0±0.24µgg-1) and total organic carbon content (0.17%±0.01), reflecting restricted productivity beneath MYI. We also report evidence of a submarine discharge of sub-permafrost brine from Taylor Valley into New Harbour. By comparing our two study sites, we show that under current climate-warming scenarios, changes to sea ice productivity and seafloor deposition are likely to initiate major shifts in benthic microbial communities, with heterotrophic organic matter degradation processes becoming increasingly important. This study provides the first assessment of how legacy sea ice conditions influence benthic microbial communities in Antarctica, contributing insight into sea ice-benthic coupling and ecosystem functioning in a polar environment.

8.
Proc Biol Sci ; 287(1931): 20201134, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32693727

ABSTRACT

Antarctica is estimated to contain as much as a quarter of earth's marine methane, however we have not discovered an active Antarctic methane seep limiting our understanding of the methane cycle. In 2011, an expansive (70 m × 1 m) microbial mat formed at 10 m water depth in the Ross Sea, Antarctica which we identify here to be a high latitude hydrogen sulfide and methane seep. Through 16S rRNA gene analysis on samples collected 1 year and 5 years after the methane seep formed, we identify the taxa involved in the Antarctic methane cycle and quantify the response rate of the microbial community to a novel input of methane. One year after the seep formed, ANaerobic MEthane oxidizing archaea (ANME), the dominant sink of methane globally, were absent. Five years later, ANME were found to make up to 4% of the microbial community, however the dominant member of this group observed (ANME-1) were unexpected considering the cold temperature (-1.8°C) and high sulfate concentrations (greater than 24 mM) present at this site. Additionally, the microbial community had not yet formed a sufficient filter to mitigate the release of methane from the sediment; methane flux from the sediment was still significant at 3.1 mmol CH4 m-2 d-1. We hypothesize that this 5 year time point represents an early successional stage of the microbiota in response to methane input. This study provides the first report of the evolution of a seep system from a non-seep environment, and reveals that the rate of microbial succession may have an unrealized impact on greenhouse gas emission from marine methane reservoirs.


Subject(s)
Methane , Antarctic Regions , Archaea/physiology , Cold Temperature , Ecological and Environmental Phenomena , Geologic Sediments , Microbiota , Phylogeny , Seawater , Sequence Analysis, DNA , Sulfates
9.
Can J Public Health ; 107(4-5): e399-e403, 2016 12 27.
Article in English | MEDLINE | ID: mdl-28026705

ABSTRACT

OBJECTIVES: The Aboriginal Children's Health and Well-Being Measure© (ACHWM) was developed to assess health from the perspectives of Aboriginal children. The purpose of this paper is to document the screening process, embedded within the ACHWM, and assess its effectiveness. METHODS: The ACHWM was implemented in 2014/2015 with children 8 to 18 years of age living on the Wiikwemkoong Unceded Territory. Survey responses were screened to identify potential risk, using an automated algorithm run on computer tablets. Local mental health workers conducted brief mental health assessments to identify and support children at-risk. Data were analyzed to estimate effectiveness of this screening process. RESULTS: A total of 293 children completed the ACHWM. The screening tool identified 35% with potential risk. Mental health workers confirmed 18% of all participants as being at-risk, and all were referred for support. The sensitivity of the tool was 75% while specificity was 79%. Improvements to the screening algorithm resulted in a specificity of 97% and negative predictive value of 95%, with no loss of sensitivity. CONCLUSION: Responsible population health surveys require a process to recognize and respond to answers indicative of health risks. This paper provides an example of a screening and triage process that enabled our survey team to screen responses in real time, respond to potential risk immediately, and connect participants to local support services. This process proved essential to conducting an ethical survey. The high specificity and negative predictive value make it an effective triage tool that is particularly valuable in Aboriginal communities and with higher-risk populations.


Subject(s)
Health Surveys , Indians, North American/psychology , Mass Screening/methods , Mental Disorders/ethnology , Adolescent , Algorithms , Canada , Child , Female , Humans , Indians, North American/statistics & numerical data , Male , Mental Disorders/diagnosis , Risk Assessment , Sensitivity and Specificity , Social Support
SELECTION OF CITATIONS
SEARCH DETAIL
...